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Relativistic electron in a quantised plane wave 

Piotr Filipowicz? 
Max-Planck-Institut fur Quantenoptik, D-8046 Garching, West Germany 

Received 10 January 1985 

Abstract. We have found an orthogonal set of solutions of the Dirac equation ior the 
electron interacting with a quantised electromagnetic plane wave. The orthogonality of 
the wavefunctions is proved and the physical interpretation of the solutions is discussed. 

1. Introduction 

The continuous development of strong radiation sources caused great interest in 
theoretical work on the interaction of charges with strong electromagnetic fields. A 
very important problem in quantum mechanics was to find exact solutions of wave 
equations for an electron interacting with an electromagnetic plane wave. Knowledge 
of these solutions is very useful as it enables us to evaluate the ranges of validity of 
perturbation methods. When the magnetic field is added this knowledge is necessary, 
since in this case the interaction can be resonant and thus the use of perturbation 
methods is rather difficult. Most existing solutions have been obtained under the 
assumption that the electromagnetic field is an external classical plane wave. Solutions 
for the quantised external wave have been obtained only recently (Berson 1969). One 
can obtain exact solutions only in the case of the external one-dimensional electromag- 
netic field (it is possible to include only those modes which propagate in the same 
direction). The solvability of problems of this type results from the fact that the 
wavevectors are null vectors and from the assumption that they are mutually orthogonal 
and also orthogonal to the electromagnetic field tensor (in the four-dimensional sense). 

The Dirac equation for the electron interacting with the classical external elec- 
tromagnetic plane wave has a long history. Volkov solved this equation in 1935 shortly 
after it was proposed by Dirac. In the sixties, because of the rapid development of 
laser physics, experimental verification of the effects which follow from the Volkov 
solutions became possible. This triggered renewed interest in the problem of the fast 
electron in strong external fields (Sengupta 1949, Brown and Kibble 1964, Redmond 
1965). Chakrabarti (1968) found solutions in the case when the anomalous magnetic 
moment was taken into account. He has shown that one can obtain Volkov states 
which transform the free-electron solution by a certain unitary operator. Beers and 
Nickle (1972) found that it is possible to solve relativistic wave equations by the 
algebraic methods connected with the reduced PoincarC group, which does not change 
the electromagnetic field tensor of the one-mode plane wave. This method permits us 
to interpret the Volkov solutions by algebraic methods. Backer and Mitter (1974) used 
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the projection operator technique proposed by Neville and Rohrlich (1971a, b) to solve 
the Dirac equation. In connection with the possibility of using Volkov solutions as a 
starting point for perturbation methods, it is important to prove orthogonality of 
wavefunctions. Freid er a1 (1966) and Von Ross (1966) thought that the Dirac Hamil- 
tonian is not Hermitian and that the Volkov states do not form an orthogonal set. 
Eberly (1969) and Ritus (1979) proved the orthogonality of wavefunctions for the 
Klein-Gordon equation and the Dirac equation respectively. 

In the case of the quantised one-mode linearly polarised plane wave, the Dirac 
equation was first solved by Berson (1969) and Fedorov and Kozakov (1973). Their 
calculations were done in the Bargman representation of the field operators. Bialynicki- 
Birula (1980) found solutions in the phase representation of creation and annihilation 
operators. Bergou and Ehlotzky ( 1983) obtained wavefunctions independent of the 
field operators representation. The authors of these papers did not find a spin operator 
that commutes with the Dirac operator. Thus they did not obtain wavefunctions 
labelled by the eigenvalues of such a spin operator. 

In this paper we propose solutions of the Dirac equation for an electron interacting 
with the circularly polarised one-mode electromagnetic field which are in a much 
simpler and more useful form than the existing solutions. It is possible to include 
other modes propagating in the same direction but the one-mode model is sufficiently 
representative. The wavefunctions obtained are the eigenfunctions of the Pauli- 
Lubanski spin operator (Lubanski 1942). We found, for the first time, that this operator 
commutes with a Dirac operator and also prove the orthogonality of wavefunctions 
for the quantised field. We have shown the connection between these solutions and 
the Volkov states in the limit of large photon numbers. 

In all the references cited above the interpretation of the results is based on the 
notion of the generalised electron momentum. It is well known that such an interpreta- 
tion leads in many cases to the wrong results. In this paper wavefunctions are 
interpreted by use of the expectation value of the kinetic momentum operator which 
is closely connected with measurements. The wavefunctions obtained for the quantised 
plane wave are not symmetric with respect to charge conjugation. For certain quantum 
numbers the momentum and energy of the positron continuously increase with time. 
This takes place even for the electromagnetic vacuum. This non-physical asymmetry 
could not be obtained using perturbation methods. It is possible to somewhat modify 
the wave equation to obtain a charge symmetric theory. We return to this problem at 
the end of the paper. The solutions presented are characterised by the simplicity of 
form. This reduces the calculations in perturbation theory in the Furry picture for an 
electron interacting with the quantised plane wave. Solutions can be used to find the 
non-linear dependence on the intensity of the wave of various effects such as Compton 
scattering, bremsstrahlung etc. They do not have great physical meaning for small 
quantum numbers of the field as all the modes but one are neglected. On the other 
hand, it is necessary to know the solutions for the quantised plane wave if the photon 
statistics is far from classical. 

2. Volkov states 

The solution of the Dirac equation for an electron interacting with electromagnetic 
plane wave was first given by Volkov (1935): 

[ia-eA(kx)-m]$(x) =0 ,  
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where A is the electromagnetic potential and k the null vector of the plane wave. This 
famous solution has focused physicists’ attention up to the present day (Brown and 
Kowalski 1983, Bergou and Varro 1980). We write it as (Landau and Lifshitz 1973) 

$ P‘ (x )  = eisp(x) 4,SkxL ( 2 )  

where p is the generalised electron momentum, which is on the mass shell, r is the 
quantum spin number, 

Sp(x)=-px-- ( 2 e p A ( t ) - e 2 A 2 ( t ) )  d t  ( 3 )  

4,Jk.x) = [ I +  ( e /2kp)kA(kx) Iupr  (4) 

( P  - m)upr = 0,  r = 1 , 2 .  ( 5 )  

2 kP * Iok 
classical action function, 

and the bispinor up. is the solution of the equation 

We have used the following notation in the expression written above. The scalar 
product of two 4-vectors is defined as a6 = aW6” = g,,aW6”. The metric tensor is chosen 
in the (+  - - - )  sign convention. The natural h/2i7 = c = 1 relativistic units are 
used. The ya scalar product is denoted by a. We omit the scalar multiplication sign 
in all expressions. 

We will now show explicitly the method of obtaining the Volkov solution. To do 
this one should solve the Dirac equation ( 1 ) .  There are three operators which commute 
with the Dirac operator, the transverse part of the kinetic momentum idt, and the 
projection of the kinetic momentum on the wavevector ika. The eigenfunction of these 
operators has the form 

$,(x) = exp(-ipx)4,(kx), ( 6 )  

the vector p is arbitrary, the eigenvalues are: ptr, kp;  the function 4p is arbitrary. There 
is some freedom in the choice of vector p .  It can be shifted by any vector proportional 
to the wavevector k without changing the eigenvalues. The resulting factor exp(-ikx) 
can be absorbed in 4, therefore vector p can be fixed on the mass shell p 2  = m2.  

Solutions of the Dirac equation can be assumed to be in the form ( 6 ) .  The function 
4p should satisfy the first-order differential equation 

( p + ik d/ d r  - eA( 7) - m)C$,( r) = 0. ( 7 )  
This equation can be solved if one multiplies it from the left-hand side by matrix k. 
The following identity is obtained 

(8) C$,(T) = (1 /2kP) (P  - e A ( r )  + m)k4p(T). 

If  we substitute (8) into ( 7 )  we obtain a simpler equation for 4 p ( ~ ) :  

i(d/dT)4p( 7) = ( 1 / 2  kp)(-2epA( T) + e2A2( T))c$,( T ) ,  ( 9 )  

in which the components of the bispinor are decoupled. If we integrate ( 9 )  we obtain 
the solution in a more general form than that stated by Volkov ( 2 ) :  
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and up is a n  arbitrary bispinor. The Volkov solution is a special case of (10) for U, 
satisfying an  additional condition 

( p - m ) up = 0. ( 1 1 )  

In this paper we restrict ourselves to the case of the one-mode circularly polarised 
plane wave. This field is described by the following vector potential 

A,(x) = A ( &  exp(-ikx))+ e*  exp(ikx)), 

where E is a polarisation vector. We prefer the form (10) for the following reasons. 
Firstly the proof of orthogonality is much simpler in this form rather than the one 
proposed by Ritus (1979). Secondly no one has found a spin operator which commutes 
with Dirac operator for which the function (2) is an  eigenfunction. It turns out that 
the function of (10) is an  eigenfunction of the projection of the Pauli-Lubanski spin 
operator (Lubanski 1942) 

gvs = rsI (12) w =1 +” 2~ g v 6 ( i d A  - eA,(kx)), 

on the wavevector k if we impose a certain condition on bispinor up The condition 
is that up should be an eigenfunction of the matrix 

S=;[&,  E * ] .  (13)  

with eigenvalues s = i l .  We note that the matrix S does not commute with matrixp - m. 
We present now a proof of orthogonality of functions (10) on the hyperplane 

xo = constant, i.e. we show that 

Gp~p’(x)  YO$^ = (2 r I36  ( P’ - P ( PO/ 2kp) upkup (14) 
 constant 

This integral can be explicitly performed over the spatial variables xi and x2. Then we 
obtain 

where 

k = wn = w(l,O, 0, 1 ) .  ( 1 5 )  

We introduce a new integration variable 

The integral ( 1 5 )  becomei 

(P’lP)= (277)36(P; - P , ) S ( P ; - P z ) 6 ( k p ’ - k p ) Q p n u p  (17) 

Changing kp  variable in the 6 function we finally obtain (14). 
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We note that the solution of the Klein-Gordon equation 

[( id  - eA(  - m’]+(x) = 0 

is much simpler. Substituting expression ( 6 )  to equation ( 1 8 )  we find that 

+ J x )  = exp(iS,(x)) ( 1 9 )  

is a solution. Wavefunctions (19) are orthogonal on the hyperplane xo = constant 
(Eberly 1969) 

d3x +g,(x)izo +,(XI = ( 2 ~ ) ~ 6 ( p ’ - p ) 2 p , ,  ( 2 0 )  
xo=constant 

(P’lP) = 5 
where f z o g  has the meaning: f z o g  = f ( d o g )  - (d0f )g .  

3. Quantised one-mode field 

In this section we consider the interaction of an electron with circularly polarised 
one-mode electromagnetic field. Such a field is described by electromagnetic vector 
potential A of the form 

A , ( k x ) = g ( ~ , a  exp(-ikx)+Ezat exp(ikx)), ( 2 1 )  

where U, a’ are boson operators, k the wavevector, g the coupling constant, E the 
polarisation vector with the following properties 

E * &  = -1, E E  = E * & *  = 0 ( E *  is a complex conjugate to E ) .  

The Dirac equation for such a field can be solved (Filipowicz 1980) in the form of a 
plane wave if one notices that the coordinate dependence of the potential A(kx)  can 
be removed by the unitary operator 

U = exp( -ikxN) ( 2 2 )  

where N is the occupation number operator: N = + ( u t a  + a u t ) .  It follows that the 
transformed function 4 (x)  = U+( x )  satisfies the equation without explicit coordinate 
dependence 

(it3 - kN - eA - m)+(x)  = 0. ( 2 3 )  

4 ( x )  = exp(-ipx)4. ( 2 4 )  

Here A = g ( & a  + &*a ’ ) .  One can find the solution of ( 2 3 )  in the plane wave form 

The bispinor 4 satisfies the matrix equation with coefficients depending on creation 
and annihilation operators 

( 2 5 )  ( p  - kN - eA - m )  = 0. 

If we multiply (25) from the left-hand side by matrix k we get the following identity 

4 = ( 1 / 2 k p ) ( p - - e A + m ) k 4 .  ( 2 6 )  

Substituting ( 2 6 )  into equation ( 2 5 )  we obtain a simpler equation for the bispinor 4 :  

[( p - e A ) ’ -  2 k p N  - e 2 g 2 S  - m’Ik4 = 0, ( 2 7 )  
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where S = $ E ,  E * ]  is a spin operator. Now we introduce two projection operators 

Q+ = fk'k, Q- = ikk',  ( 2 8 )  

where k' is the null vector orthogonal to the wavevector k. These operators have the 
following properties: Q*Qf = Q*, QfQi = 0,  Q++ Q- = 1 .  It is easy to show that 

k 4  = k 4 + ,  where 4+ = Q+4. ( 2 9 )  

Equation ( 2 7 )  is in fact an  equation for projection 4+ and the identity ( 2 6 )  reproduces 
the function 4 from &+. In order to satisfy ( 2 7 )  the projection 4+ should be the direct 
product of the field and  spin states: 

4+ = xs/6), ( 3 0 )  

where 16) is a state depending on the field operators only. Moreover xs should be an  
eigenfunction of the spin operator S :  

sxr = sxs, s = * l  

with the auxiliary condition Q-xs = 0. We notice that the spin operator S commutes 
with matrices k and k ' .  After substituting (30) into ( 2 7 )  we obtain an  equation for 16) 
which has the bilinear form of creation and  annihilation operators acting on 16) to 
give zero. Such a bilinear form can be diagonalised with the help of a displacement 
unitary operator: 

D, =exp(-a,a'+ a z a ) ,  

a, = - [ eg / ( e ' g 2  + kp )I( pt. * ). 
where 

The operator D, shifts operators a and a t  

a + D , a D ~ = a + c t , .  

After performing this transformation we obtain 

The function D,IO should be the eigenfunction of the occupation number operator 

16) = D;ln). (34) 
After performing inverse transformations one finally obtains the solution of the Dirac 
equation 

1 
( 3 5 )  t,bPsn(x) = exp( -ipx + ikxN) -( p - eA + m )  D;kXsIn), 

2 kP 
where vector p satisfies the following condition 

- m 2 = 0 .  2 2(PE)(PE*) p 2  - 2 k p ( n  +i) - 2 e 2 g 2 ( n  + f + f s )  + 2 e  g 
kp + e 2 g 2  

The wavefunction ( 3 5 )  is an  eigenfunction of the projection of the Pauli-Lubanski 
spin operator W on the wavevector k 

( 3 7 )  k Wt,b,sn ( x ) = SkP$psn ( x ) . 
Operator k W commutes with the Dirac operator. 
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Vector p does not lie on the mass shell. It is convenient to label solutions (35)  
with a different vector P which is on the mass shell and is connected with vector p by 
the formula 

P=P-Cm(kP,P&,P&*), (38) 

where 

e2g2 e 2 g 2  (P&>(P&*) c,, = n + f + - ( n + t + t s )  -- kP kp kp + e2g2 ' (39) 

This change of variables has the interesting property that the transformation (38) can 
be easily inverted: 

p = P + C,, ( kP, PE, PE * ) k. (40) 

The wavefunctions (35)  can be used in the calculation of various effects appearing in 
strong electromagnetic field. Thus their orthogonality is very important. We will show 
that 

c 

= ( Po/ kP) ( XskxS) ( 2  T ) ~  6 (P'  - P )  6 6 ,,Sn. (41) 

From the continuity equation 

it follows that 
r 

Integral (41) is equal to zero if p b #  po ,  thus we can assume that p b = p o .  For this case 
we obtain 

We will change variables inside the 6 function 

S ( p ' - p )  = ( l /M)6(P ' -P) .  (45) 
It can be noticed that the complicated factor M in equations (44) and (45) cancels. 
The remaining terms give (41). 

We write the wavefunction in a slightly different form: 

xexp(ie PA'( kx) ) exp( - i k x ( n + j s ) ) g x , 5 1 n ) .  
k P  + e2g2 

If we go to the limit of large occupation number of the field ( n  +a) in such a way 
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that g&= A / &  remains constant, the wavefunction (46) will go to the solution of 
the Dirac equation for a classical field of the form 

A ( k x ) = A [ &  exp(- ikx)+&* exp(ikx)]. 

The Klein-Gordon equation can be solved in a similar way. For this case we get 
the following wavefunction 

e 2 g 2 ( P E ) ( P E * ) k x +  e P A ’ ( k x )  
( L f i ( x )  = exp( - i f i  + i k P  + e2g2 ) exp( - i k x N g ) l n )  (47) 

where vector P is on the mass shell P 2  = m 2 .  These functions are orthogonal on the 
hyperplane xo = constant 

d3x (Lp., ,(  x)icdo+fi ( x )  = ( 2 ~ ) ~ 2 & S (  P’ - P ) .  
xo=constant 

(P’n’lPn) = 

4. Physical interpretation 

Wavefunctions (10) are labelled by parameters p ” .  These parameters satisfy the 
condition p2 = m2 but they d o  not form the kinetic momentum of the particle. It is 
necessary to find the connection between kinetic momentum and vector p. In order 
to d o  so we have to calculate the expectation value of the kinetic momentum operator 
in a certain state. This expectation value should be connected with the classical 
expression (Bieresteckij et a1 1968) for the kinetic momentum. 

We localise the particle in a region much smaller than the wavelength of the plane 
wave, Azk, << 1 .  This region should also be much larger than the Compton wavelength 
in order to avoid difficulties connected with interference of states with positive and  
negative frequencies. It is very difficult to use such a wavepacket in calculations of 
expectation values at a fixed time. It becomes simpler if one changes the variables 
from ( t ,  z )  to ( t  - z ,  t +  z ) .  Localisation of particle at a fixed time is equivalent to 
localisation at  a fixed value of kx (Neville 1971). We will find the expectation value 
of the kinetic momentum on the hyperplane kx=constant in a state described by 
a wavepacket localised around certain k‘x values (Chakrabarti 1969) 

where d3$ = dp, de, d (  kp), + p ( x )  is a solution of the Dirac equation for the classical 
field and  h(p^)  is a profile of wavepacket normalised in the following way 

For this state we obtain 

( ~ ” ( x ) )  = (ia” - e A ” ( k x ) )  = I d32  &(x)k(id” - e A ( k X ) ) $ h ( x )  
kr=constant 
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where 

d3x  ̂= dx dy d(k’x). (50) 

Bispinors up are normalised to one particle in the volume: Upup = m / 2 k p .  Comparing 
this expression with the classical formula for the kinetic momentum (Bieresteckij 1968) 
we can make the following identification. The mean values ( d 3 ? / ( 2 n ) 3 ) l h ( $ ) 1 2 p f i  are 
the quantum counterparts of the classical parameters p” for sufficiently narrow 
wavepackets, (m/ kp)kx  should be identified with the proper time. It can be shown 
that vector p is the momentum of the particle if the electromagnetic field is switched 
adiabatically. The square of the expectation value of the kinetic momentum averaged 
over time is equal to 

( ~ ( x ) ) ~ = m : = m ~ + e ~ h ~ ,  (51) 

m,  is called the effective mass of the particle interacting with the plane wave. 
It is very interesting to find the expectation value of the kinetic momentum in the 

case of quantised field and show the relation with the semiclassical expression (50). 
Solutions (35) are additionally labelled by the quantum number n, which describes 
the field state. In order to elucidate semiclassical correspondence we will assume that 
the electromagnetic field is in a coherent state. In the present case the wavefunction 
has the form 

where +,,, is a solution of (35) and coherent state 

is the eigenstate of annihilation operator ala)  = ala). After performing the necessary 
calculations we find that the expectation value of the kinetic momentum on the 
hyperplane kx = constant is equal to 

where 7) = (1 + e 2 g 2 /  kp)kx.  Expression ( 5 3 )  becomes equal to the expression (50) in 
the limit of large occupation numbers /aIz+0o. (Factor g21aI2 connected with the 
density of photons is kept constant in this limiting procedure.) The square of (#) 
averaged over time is equal to 

(T(x))’= m 2 + 2 e 2 g 2 ( J a / 2 + f + ; s )  = m i .  (54) 

For the spinless particle satisfying the Klein-Gordon equation one obtains identical 
results if neglects spin terms in (53) and (54). 
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We note here that for e2g2+ kp = 0 all the formulae given above are not valid, this 
is a reflection of the difficulties of the one-particle theory. For certain quantum numbers 
a negative frequency solution describes a positron which accelerates even in the vacuum 
field. This trouble arises from the charge asymmetry of the proposed equations. One 
can try to compare exact equations of quantum electrodynamics for operators +, A 
with single particle equations. It can be easily shown that the matrix element of 
operator CL in the single particle state satisfies the wave equation if one ignores the 
current in the equation for operator A. This is a good approximation for highly 
occupied photon states but it violates the commutation relation 

which is necessary for the charge symmetry of the problem. It is possible to improve 
the theory (Fedorov and Kozakov 1973). We impose requirement ( 5 5 )  and rewrite the 
term A(x)+  appearing in the wave equation in its symmetric form ;(A+ + +A). However, 
for this case equations become operator-like in character. We found solutions of 
improved equations. They are really charge symmetric and will be reported elsewhere. 

5. Summary 

We have presented the solutions of the Dirac equation for the electron interacting with 
the one-mode circularly polarised electromagnetic field. The wavefunctions obtained 
differ in form from Volkov states. They are eigenfunctions of the Pauli-Lubanski spin 
operator. The orthogonality of states has been shown explicitly for the first time. We 
have found the connection between the quantum numbers and the expectation value 
of the kinetic momentum. This connection allow us to interpret the vector momentum 
p which labels the solutions. 

Although the results discussed above have been obtained in the case of the one-mode 
field they can be generalised to an arbitrary quantised plane wave. 
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